An Inner/Outer Stationary Iteration for Computing PageRank

نویسندگان

  • Andrew P. Gray
  • Chen Greif
  • Tracy Lau
چکیده

We present a stationary iterative scheme for PageRank computation. The algorithm is based on a linear system formulation of the problem, uses inner/outer iterations, and amounts to a simple preconditioning technique. It is simple, can be easily implemented and parallelized, and requires minimal storage overhead. Convergence analysis shows that the algorithm is effective for a crude inner tolerance and is not particularly sensitive to the choice of the parameters involved. Numerical examples featuring matrices of dimensions up to approximately 10 confirm the analytical results and demonstrate the accelerated convergence of the algorithm compared to the power method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Inner-Outer Iteration for Computing PageRank

We present a new iterative scheme for PageRank computation. The algorithm is applied to the linear system formulation of the problem, using inner-outer stationary iterations. It is simple, can be easily implemented and parallelized, and requires minimal storage overhead. Our convergence analysis shows that the algorithm is effective for a crude inner tolerance and is not sensitive to the choice...

متن کامل

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

A Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation

Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...

متن کامل

Fast Parallel PageRank: A Linear System Approach

In this paper we investigate the convergence of iterative stationary and Krylov subspace methods for the PageRank linear system, including the convergence dependency on teleportation. We demonstrate that linear system iterations converge faster than the simple power method and are less sensitive to the changes in teleportation. In order to perform this study we developed a framework for paralle...

متن کامل

On adaptively accelerated Arnoldi method for computing PageRank

A generalized refined Arnoldi method based on the weighted inner product is presented for computing PageRank. The properties of the generalized refined Arnoldi method were studied. To speed up the convergence performance for computing PageRank, we propose to change the weights adaptively where the weights are calculated based on the current residual corresponding to the approximate PageRank vec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007